

Prof. Ulf Landmesser

Efficacy and safety of siRNA and ASO therapeutics

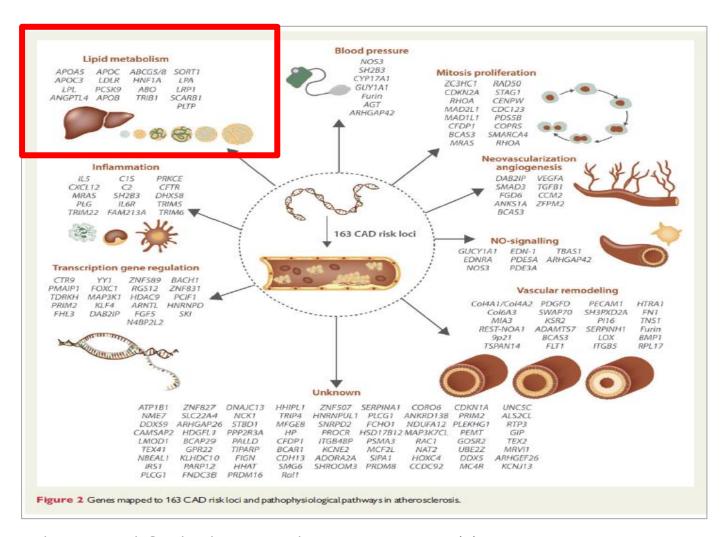
31st January 2024 ESC Cardiovascular Roundtable

Efficacy and safety of siRNA and ASO therapeutics

Genetics of Cardiovascular Disease:

Example of Advanced Understanding in Coronary Disease

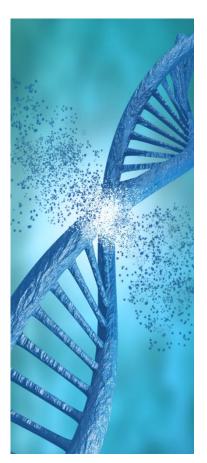
RNA-targeted Therapy – Efficacy:


Example of Lowering Causal Lipoproteins for CVD

RNA-targeted therapy – Safety:

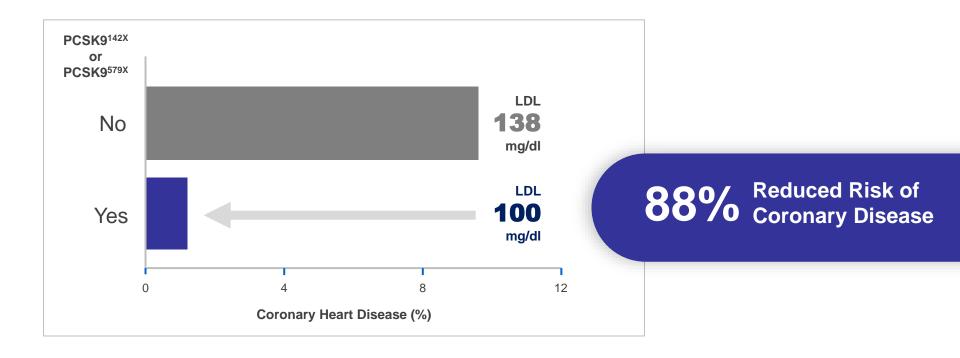
Example of Lowering Causal Lipoproteins for CVD

Genes mapped to coronary disease risk loci and pathophysiological pathways in atherosclerosis


Erdmann J et al. & Schunkert H. *Cardiovasc Res* 2018; 114(9):1241-1257

Aragam K et al.; *Nat Genet* 2022; 54(12):1803-1815 - <u>CARDIoGRAMplusC4D Consortium</u>

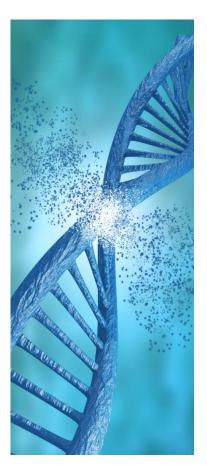
(currently > 240 genom-wide associations)


Observational, Genetic and Clinical Studies: Lipoproteins and Coronary Disease

		CORONARY I	CORONARY DISEASE RISK	
LDL cholesterol		Genetic Studies	Clinical Studies	
HMG-CO Reductase				
NPC1L1				
PCSK9	<u> </u>	•	•	
Lipoprotein (a)	1	•	?	
Friglyceride-Rich Lipoproteins:	_	_		
ApoCIII	*	-	?	
NGPTL3 /4	•	•	?	
IDL-Cholesterol				
Endothelial Lipase	•	\leftrightarrow	?	

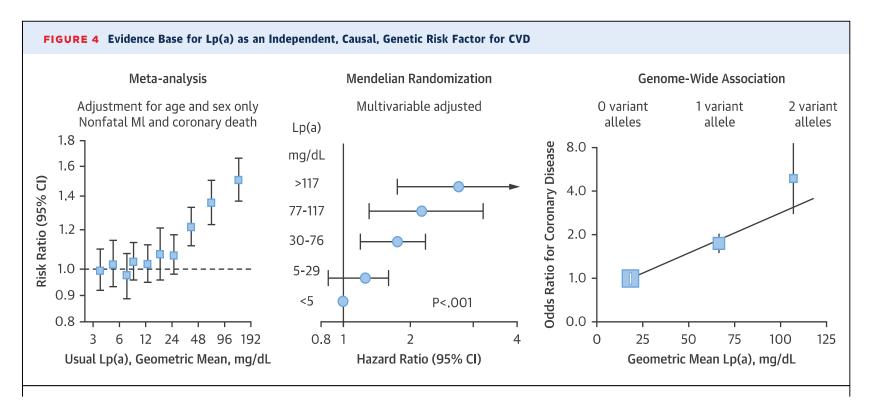
Landmesser U, Hazen S. **Eur Heart J** 2018; 39: 2179-2182

PCSK9 Sequence Variant and Coronary Disease



Cohen JC et al., **N Engl J Med** 2006; 354:1264-1272

Ferrence B,.., Landmesser U et al. Eur Heart 2017; 38: 2459-2472


Observational, Genetic and Clinical Studies: Lipoproteins and Coronary Disease

		CORONARY DISEASE RISK	
LDL cholesterol		Genetic Studies	Clinical Studies
HMG-CO Reductase			
IPC1L1	-	-	-
PCSK9	•		•
₋ipoprotein (a)	•	•	?
Γriglyceride-Rich ∟ipoproteins:		Ι.	0
ApoCIII		-	?
ANGPTL3 /4			?
IDL-Cholesterol			
HDL-Cholesterol Endothelial Lipase	•	⇔	?

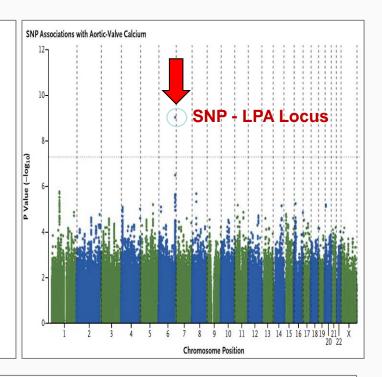
Landmesser U, Hazen S. **Eur Heart J** 2018; 39: 2179-2182

Lipoprotein (a) and Coronary Disease (Non-fatal MI and Coronary Death)

Tsimikas S. J Am Coll Cardiol. 2017; 69(6):692-711

Genetic associations: Lipoprotein(a) and aortic valve calcification/stenosis

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812

FEBRUARY 7, 2013

VOL. 368 NO. 6

Genetic Associations with Valvular Calcification and Aortic Stenosis

George Thanassoulis, M.D., Catherine Y. Campbell, M.D., David S. Owens, M.D., J. Gustav Smith, M.D., Ph.D., Albert V. Smith, Ph.D., Gina M. Peloso, Ph.D., Kathleen F. Kerr, Ph.D., Sonali Pechlivanis, Ph.D., Matthew J. Budoff, M.D., Tamara B. Harris, M.D., Rajeev Malhotra, M.D., Kevin D. O'Brien, M.D., Pia R. Kamstrup, M.D., Ph.D., Børge G. Nordestgaard, M.D., D.M.Sc., Anne Tybjaerg-Hansen, M.D., D.M.Sc., Matthew A. Allison, M.D., M.P.H., Thor Aspelund, Ph.D., Michael H. Criqui, M.D., M.P.H., Susan R. Heckbert, M.D., Ph.D., Shih-Jen Hwang, Ph.D., Yongmei Liu, Ph.D., Marketa Sjogren, Ph.D., Jesper van der Pals, M.D., Ph.D., Hagen Kälsch, M.D., Thomas W. Mühleisen, Ph.D., Markus M. Nöthen, M.D., L. Adrienne Cupples, Ph.D., Muriel Caslake, Ph.D., Emanuele Di Angelantonio, M.D., Ph.D., John Danesh, F.R.C.P., Jerome I. Rotter, M.D., Sigurdur Sigurdsson, M.Sc., Quenna Wong, M.S., Raimund Erbel, M.D., Sekar Kathiresan, M.D., Olle Melander, M.D., Ph.D., Vilmundur Gudnason, M.D., Ph.D., Christopher J. O'Donnell, M.D., M.P.H., and Wendy S. Post, M.D., for the CHARGE Extracoronary Calcium Working Group

Conclusions: Genetic variation in the **LPA locus**, mediated by Lp(a) levels, is associated with aortic valve calcification across multiple ethnic groups and with **incident clinical aortic stenosis**.

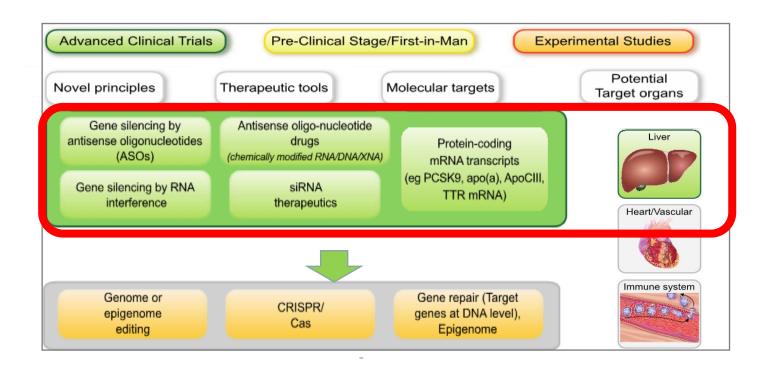
Efficacy and safety of siRNA and ASO therapeutics

Genetics of Cardiovascular Disease:

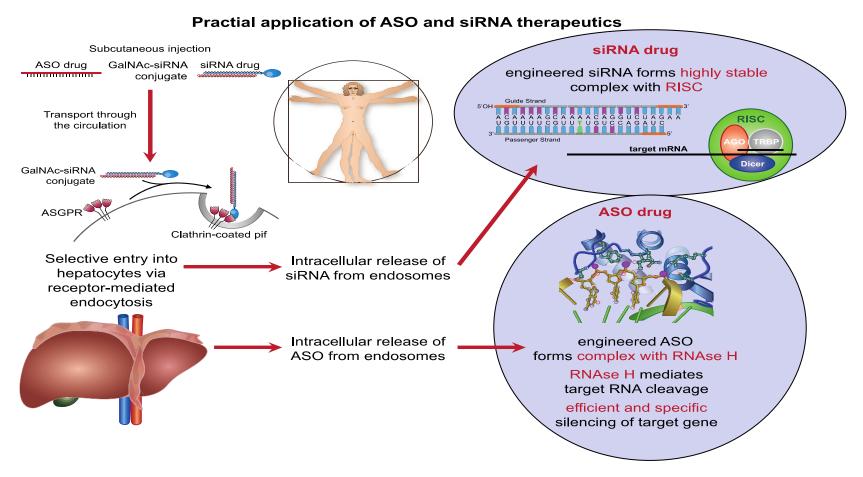
Example of Advanced Understanding in Coronary Disease

RNA-targeted Therapy – Efficacy:

Example of Lowering Causal Lipoproteins for CVD

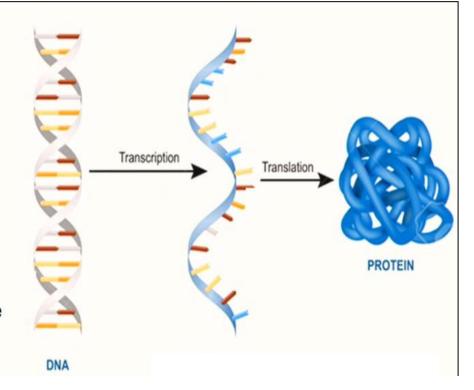

RNA-targeted therapy – Safety:

Example of Lowering Causal Lipoproteins for CVD


ESC

From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases

From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases

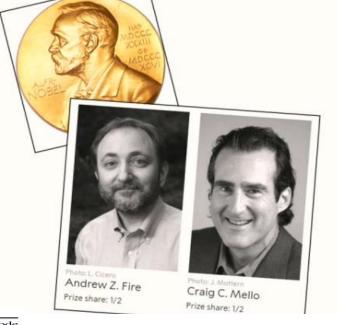

RNA-targeted therapies – Targeting mRNA to prevent protein synthesis

Transcription

- Process by which genetic information encoded in DNA is copied to mRNA
- Occurs in the nucleus

Translation

- Process by which information encoded in mRNA is used to synthesize a protein at a ribosome
- Occurs in the cytoplasm

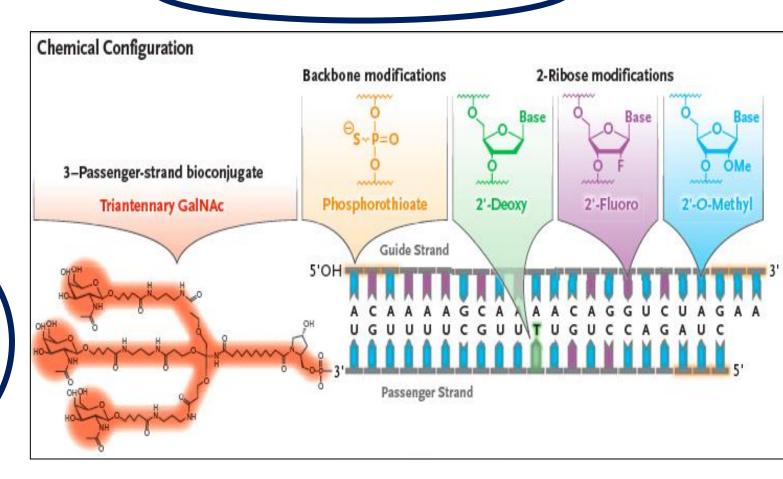

RNA interference

(small interference RNAs – siRNAs)

- Small interfering RNA (siRNA) therapies represent a new approach to harness a natural biologic pathway called RNA interference (RNAi)
- By means of RNAi, our bodies regulate the production of different proteins
- Researchers first discovered RNAi in 1998. The 2006 Nobel Prize for Physiology or Medicine, awarded to Craig Mello and Andrew Fire, recognized RNAi as a major scientific discovery
- Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA molecules, ~25 base pairs in length, operating within the RNA interference (RNAi) pathway
- It interferes with the expression of specific genes with complementary nucleotide sequences by degrading mRNA after transcription, preventing translation

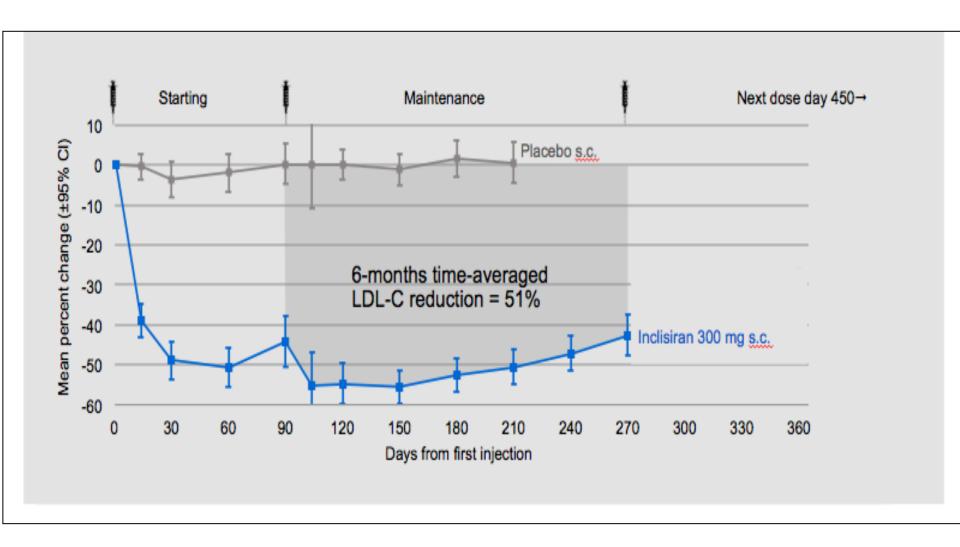
Fire A, et al. & Mello CC.

Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans
Nature 1998; 391:806-11

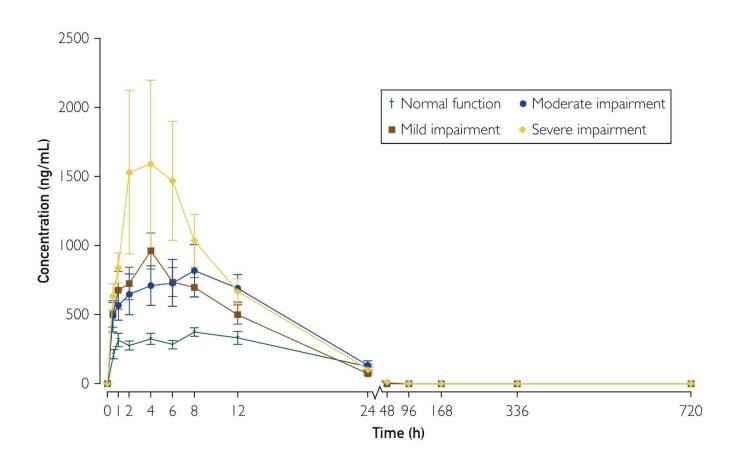

2006 Nobel Prize in Physiology or Medicine:

In their brilliant paper, Andrew Fire and Craig Mello demonstrated that **double-stranded RNA activates an enzymatic mechanism that leads to gene silencing**, with the genetic code in the RNA molecule determining which gene to silence.

Therapeutic siRNA – targeting PCSK9 (Inclisiran)


Structure and chemical modifications; Conjugated Targeting molecule

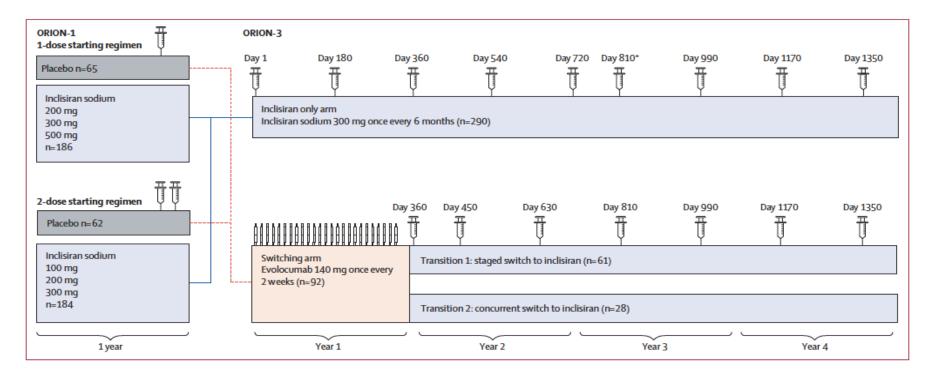
1. Nucleotide Modifications


2. GalNAc
Conjugation –
Targeting the
Asialo-glycoprotein
receptor
(ASGPR)

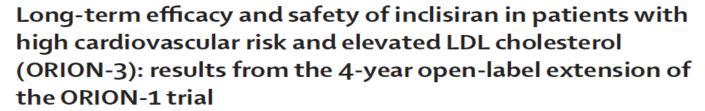
PCSK9 siRNA – ORION-1 Phase 2 Study: Long-lasting effects of of 300 mg s.c. PCSK9 siRNA

Ray K*; Landmesser U* et al. *N Engl J Med* 2017;376:1430-1440

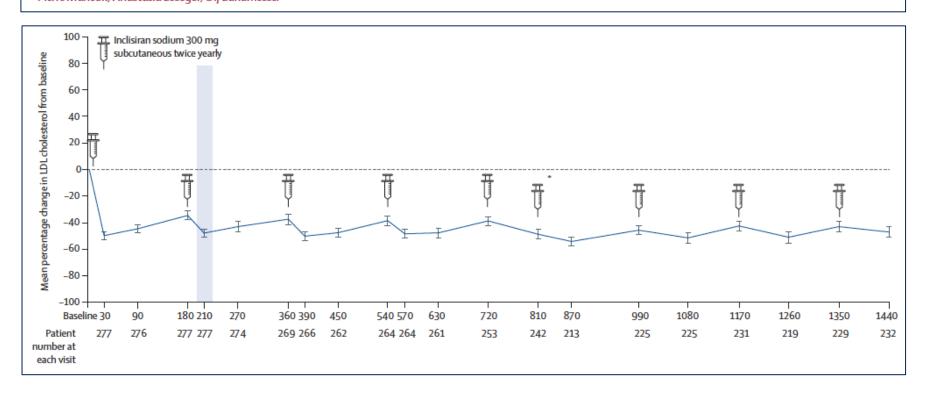
New Pharmacokinetics: PCSK9 siRNA Plasma concentrations


Mayo Clin Proc 2020; 95: 77-89

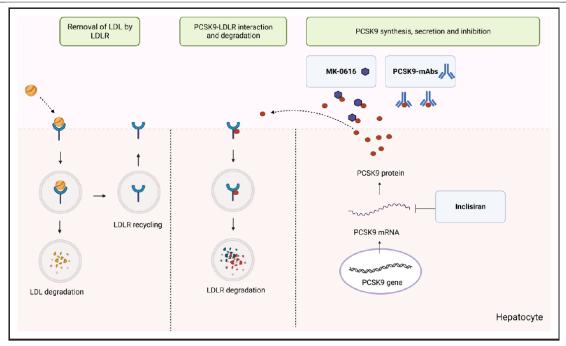
Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): results from the 4-year open-label extension of the ORION-1 trial



Kausik K Ray, Roel PTTroquay, Frank L J Visseren, Lawrence A Leiter, R Scott Wright, Sheikh Vikarunnessa, Zsolt Talloczy, Xiao Zang, Pierre Maheux, Anastasia Lesoqor, Ulf Landmesser


Lancet Diabetes Endocrinol. 2023; 11(2):109-119

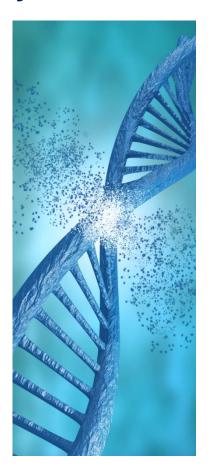
Kausik K Ray, Roel PT Troquay, Frank L J Visseren, Lawrence A Leiter, R Scott Wright, Sheikh Vikarunnessa, Zsolt Talloczy, Xiao Zang, Pierre Maheux, Anastasia Lesoqor, Ulf Landmesser


Lancet Diabetes Endocrinol. 2023; 11(2):109-119

Circulation

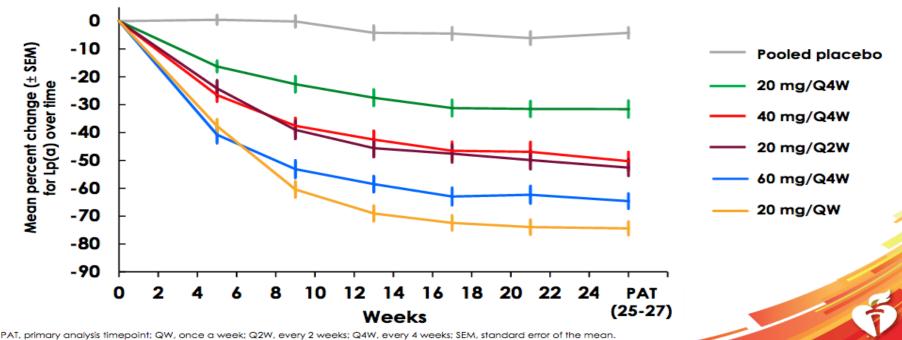
EDITORIAL

New Chapter in the PCSK9 Book: Oral Inhibition of PCSK9 Binding to the LDL Receptor With a Macrocyclic Peptide


Ulf Landmesser, MD; Umidakhon Makhmudova, MD

Figure, LDLR mediates the endocytosis and subsequent degradation of cholesterol-rich LDL.

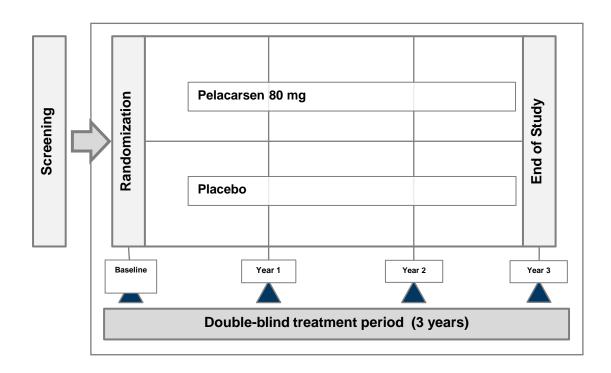
Observational, Genetic and Clinical Studies: Atherogenic Lipoproteins and Coronary Disease


		CORONARY DISEASE RISK		
LDL cholesterol		Genetic Studies	Clinical Studies	
HMG-CO Reductase				
NPC1L1	•	-	-	
PCSK9			•	
Lipoprotein (a)	1	1	?	
Triglyceride-Rich Lipoproteins:				
ApoCIII		•	?	
ANGPTL3 /4	•	•	?	
HDL-Cholesterol				
HDL-Cholesterol Endothelial Lipase	•	\Leftrightarrow	?	

Landmesser U, Hazen S. **Eur Heart J** 2018; 39: 2179-2182

Lipoprotein (a) Antisense oligonucleotide therapy: **Phase 2 Study**

Primary endpoint: Mean percent change (SEM) in Lp(a) from baseline to week 25-27

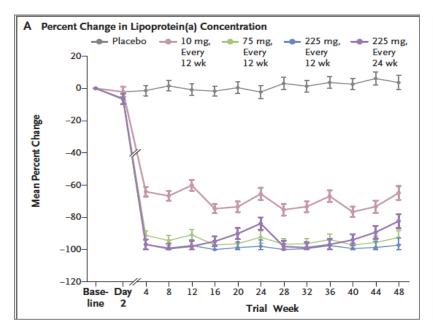

The Changing Landscape of Aortic-Valve Stenosis Management

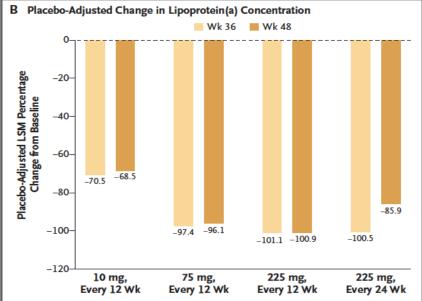
Ulf Landmesser, M.D.

- Aortic-valve stenosis has a prevalence of > 2.5 % in adults > 75 years
- Current managment is largely limited to a decision on timing and mode of aortic-valve replacement.

 (Relevant periprocedural risk and a bioprosthetic-valve failure rate >3% at 5 years)
- There is a major unmet clinical need for medical treatment of aortic-valve stenosis a highly frequent healthcare problem

Lp(a)FRONTIERS CAVS: Study design


Aims:


- To assess the impact of Lp(a) lowering with pelacarsen on CAVS progression
- To assess the impact of Lp(a) lowering with pelacarsen in atherosclerotic plaque features

ORIGINAL ARTICLE

Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease

Michelle L. O'Donoghue, M.D., M.P.H., Robert S. Rosenson, M.D.,
Baris Gencer, M.D., M.P.H., J. Antonio G. López, M.D., Norman E. Lepor, M.D.,
Seth J. Baum, M.D., Elmer Stout, M.D., Daniel Gaudet, M.D., Ph.D.,
Beat Knusel, Ph.D., Julia F. Kuder, M.A., Xinhui Ran, M.S.,
Sabina A. Murphy, M.P.H., Huei Wang, Ph.D., You Wu, Ph.D.,
Helina Kassahun, M.D., and Marc S. Sabatine, M.D., M.P.H.,
for the OCEAN(a)-DOSE Trial Investigators*

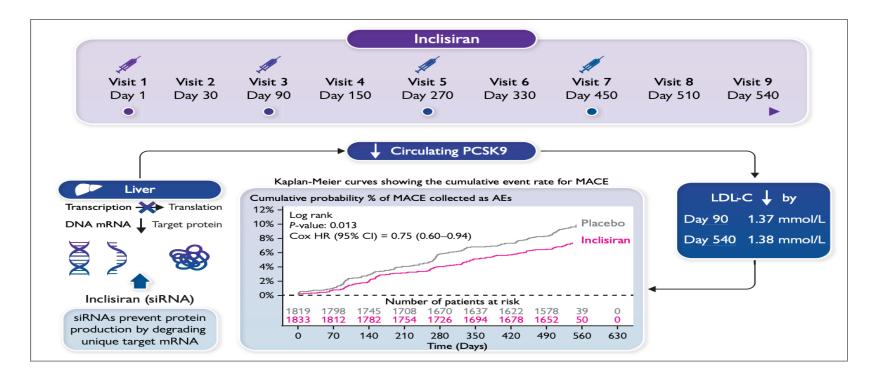
Efficacy and safety of siRNA and ASO therapeutics

Genetics of Cardiovascular Disease:

Example of Advanced Understanding in Coronary Disease

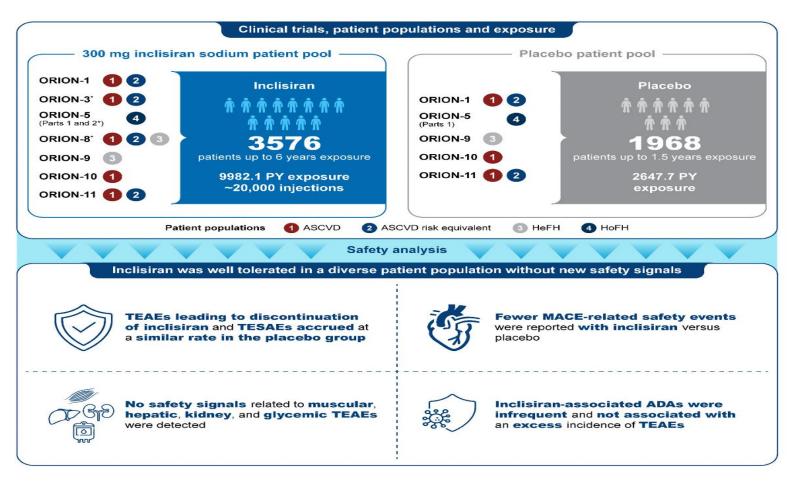
RNA-targeted Therapy – Efficacy:

Example of Lowering Causal Lipoproteins for CVD


RNA-targeted therapy – Safety:

Example of Lowering Causal Lipoproteins for CVD

Epidemiology and prevention


Inclisiran and cardiovascular events: a patient-level analysis of phase III trials

Kausik K. Ray (10 14*), Frederick J. Raal², David G. Kallend^{3,4†}, Mark J. Jaros⁵, Wolfgang Koenig (10 6,7), Lawrence A. Leiter⁸, Ulf Landmesser (10 9),

ORION pooled analysis: Safety and tolerability of inclisiran in 7 clinical trials

No safety signals for muscular, hepatic, kidney, or glycemic TEAE

Wright RS, König W, Landmesser U et al. J Am Coll Cardiol 2023 Dec 12;82(24):2251-2261

Clinical Outcome Trials (selected) with targeted (GalNaC-conjugated) siRNAs/ASOs for Causal Lipoproteins for CVD

siRNA PCSK9

- ORION-4
- VICTORION-2-PREVENT

ASO Lp(a)

HORIZON

siRNA Lp(a)

OCEAN

ASO ApoCIII

CORE Program

Braunwald's Corner

How to live to 100 before developing clinical coronary artery disease: a suggestion

Eugene Braunwald (1) 1,2*

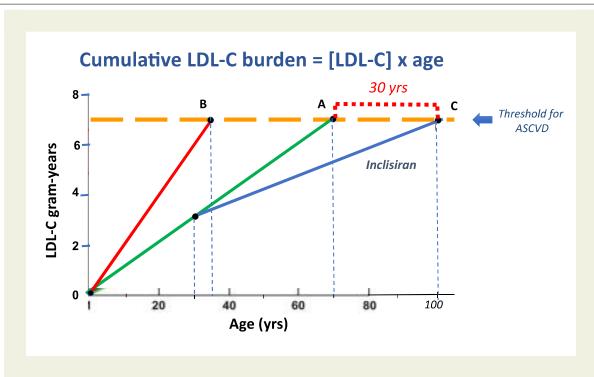
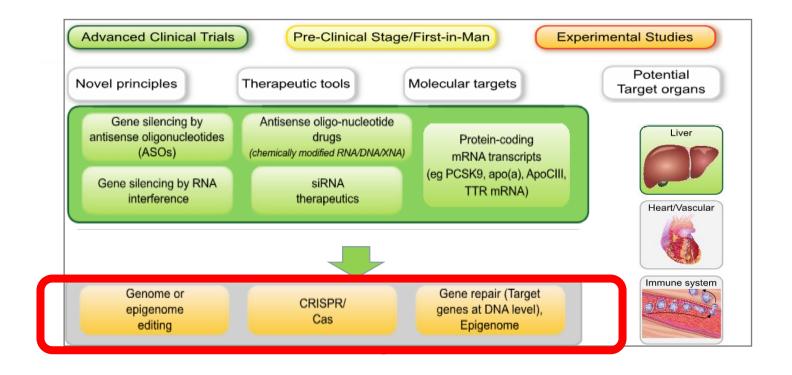



Figure I Modified from Horton et al. 12

- ASCVD threshold of 7 LDL-C gram-years
- Red line FH LDL-C 200 mg/dl
- Green line LDL-C 100 mg/dl
- Blue line –
 LDL-C 100 mg/dl, but
 PCSK9 siRNA
 from age 30 years

From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases

Efficacy and safety of siRNA and ASO therapeutics

Genetics of Cardiovascular Disease:

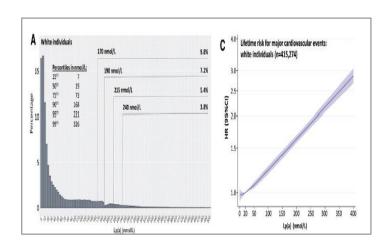
Example of Advanced Understanding in Coronary Disease

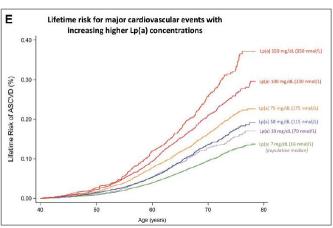
RNA-targeted Therapy – Efficacy:

Example of Lowering Causal Lipoproteins for CVD

RNA-targeted therapy – Safety:

Example of Lowering Causal Lipoproteins for CVD


Thank you!



SPECIAL ARTICLE

Miscellaneous

Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis:

Kronenberg F et al.; Eur Heart J. 2022 Aug 29 (Online ahead of print)